Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 189, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305872

RESUMO

Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.


Assuntos
Hordeum , Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Petróleo/microbiologia , Campos de Petróleo e Gás , Hordeum/metabolismo , Poluentes do Solo/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Bacillus subtilis/metabolismo , Carbono/metabolismo , Solo , Biodegradação Ambiental , Microbiologia do Solo , Hidrocarbonetos/metabolismo
2.
Bioresour Technol ; 398: 130472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387841

RESUMO

As toxic contaminants, aromatic compounds are widespread in most environmental matrices, and bioenzymatic catalysis plays a critical role in the degradation of xenobiotics. Here, a thermophillic aromatic hydrocarbon degrader Aeribacillus pallidus HB-1 was found. Bioinformatic analysis of the HB-1 genome revealed two ring-cleaving extradiol dioxygenases (EDOs), among which, EDO-0418 was assigned to a new subfamily of type I.1 EDOs and exhibited a broad substrate specificity, particularly towards biarylic substrate. Both EDOs exhibited optimal activities at elevated temperatures (55 and 65 °C, respectively) and showed remarkable thermostability, pH stability, metal ion resistance and tolerance to chemical reagents. Most importantly, simulated wastewater bioreactor experiments demonstrated efficient and uniform degradation performance of mixed aromatic substrates under harsh environments by the two enzymes combined for potential industrial applications. The unveiling of two thermostable dioxygenases with broad substrate specificities and stress tolerance provides a novel approach for highly efficient environmental bioremediation using composite enzyme systems.


Assuntos
Bacillaceae , Dioxigenases , Hidrocarbonetos Aromáticos , Dioxigenases/genética , Dioxigenases/química , Dioxigenases/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Metais
3.
Sci Total Environ ; 892: 164669, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301384

RESUMO

Aromatic hydrocarbons (AHs) are known to contaminate groundwater with low indigenous microorganism populations and limited nutrient substrates for degradation reactions, resulting in weak natural remediation abilities of groundwater ecosystems. In this study, we aimed to utilize the principles of AH degradation by microorganisms to identify effective nutrients and optimize nutrient substrate allocation through actual surveys of AH-contaminated sites and microcosm experiments. Building on this, using biostimulation and controlled-release technology, we developed a natural polysaccharide-based encapsulated targeted bionutrient (SA-H-CS) that is characterized by easy uptake, good stability, controllable slow-release migration, and longevity to stimulate indigenous microflora in groundwater to efficiently degrade AHs. Results showed that SA-H-CS is a simple overall dispersion system, and nutrient components diffuse readily through the polymer network. The crosslinking of SA and CS resulted in a more compact structure of the synthesized SA-H-CS, effectively encapsulating the nutrient components and extending their active duration to >20 days. SA-H-CS improved the degradation efficiency of AHs and prompted microorganisms to maintain a high degradation rate (i.e., above 80 %) even in the presence of high concentrations of AHs, particularly naphthalene and O-xylene. Under SA-H-CS stimulation, microorganisms grew rapidly, and the diversity and total number of species of microflora increased significantly, with a notable increase in the proportion of Actinobacteria in the microbial community primarily due to the increased abundance of Arthrobacter, Rhodococcus, and Microbacterium, which are capable of degrading AHs. Concurrently, there was a notable enhancement in the metabolic function of the indigenous microbial communities responsible for AH degradation. SA-H-CS injection facilitated the delivery of nutrient components into the underground environment, improved the conversion ability of inorganic electron donors/receptors in the indigenous microbial community system, and strengthened the co-metabolism mechanism among microorganisms, achieving the goal of efficient AH degradation.


Assuntos
Água Subterrânea , Hidrocarbonetos Aromáticos , Ecossistema , Biodegradação Ambiental , Hidrocarbonetos Aromáticos/metabolismo , Água Subterrânea/química , Bactérias/metabolismo
4.
Microb Cell Fact ; 22(1): 22, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732770

RESUMO

Pseudomonas putida DOT-T1E is a highly solvent tolerant strain for which many genetic tools have been developed. The strain represents a promising candidate host for the synthesis of aromatic compounds-opening a path towards a green alternative to petrol-derived chemicals. We have engineered this strain to produce phenylalanine, which can then be used as a raw material for the synthesis of styrene via trans-cinnamic acid. To understand the response of this strain to the bioproducts of interest, we have analyzed the in-depth physiological and genetic response of the strain to these compounds. We found that in response to the exposure to the toxic compounds that the strain can produce, the cell launches a multifactorial response to enhance membrane impermeabilization. This process occurs via the activation of a cis to trans isomerase that converts cis unsaturated fatty acids to their corresponding trans isomers. In addition, the bacterial cells initiate a stress response program that involves the synthesis of a number of chaperones and ROS removing enzymes, such as peroxidases and superoxide dismutases. The strain also responds by enhancing the metabolism of glucose through the specific induction of the glucose phosphorylative pathway, Entner-Doudoroff enzymes, Krebs cycle enzymes and Nuo. In step with these changes, the cells induce two efflux pumps to extrude the toxic chemicals. Through analyzing a wide collection of efflux pump mutants, we found that the most relevant pump is TtgGHI, which is controlled by the TtgV regulator.


Assuntos
Hidrocarbonetos Aromáticos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Açúcares/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Solventes/metabolismo , Glucose/metabolismo
5.
Environ Sci Technol ; 57(7): 2846-2855, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752053

RESUMO

Among monoaromatic hydrocarbons, xylenes, especially the ortho and para isomers, are the least biodegradable compounds in oxygen-limited subsurface environments. Although much knowledge has been gained regarding the anaerobic degradation of xylene isomers in the past 2 decades, the diversity of those bacteria which are able to degrade them under microaerobic conditions is still unknown. To overcome this limitation, aerobic and microaerobic xylene-degrading enrichment cultures were established using groundwater taken from a xylene-contaminated site, and the associated bacterial communities were investigated using a polyphasic approach. Our results show that the xylene-degrading bacterial communities were distinctly different between aerobic and microaerobic enrichment conditions. Although members of the genus Pseudomonas were the most dominant in both types of enrichments, the Rhodoferax and Azovibrio lineages were only abundant under microaerobic conditions, while Sphingobium entirely replaced them under aerobic conditions. Analysis of a metagenome-assembled genome of a Rhodoferax-related bacterium revealed aromatic hydrocarbon-degrading ability by identifying two catechol 2,3-dioxygenases in the genome. Moreover, phylogenetic analysis indicated that both enzymes belonged to a newly defined subfamily of type I.2 extradiol dioxygenases (EDOs). Aerobic and microaerobic xylene-degradation experiments were conducted on strains Sphingobium sp. AS12 and Pseudomonas sp. MAP12, isolated from the aerobic and microaerobic enrichments, respectively. The obtained results, together with the whole-genome sequence data of the strains, confirmed the observation that members of the genus Sphingobium are excellent aromatic hydrocarbon degraders but effective only under clear aerobic conditions. Overall, it was concluded that the observed differences between the bacterial communities of aerobic and microaerobic xylene-degrading enrichments were driven primarily by (i) the method of aromatic ring activation (monooxygenation vs dioxygenation), (ii) the type of EDO enzymes, and (iii) the ability of degraders to respire utilizing nitrate.


Assuntos
Dioxigenases , Hidrocarbonetos Aromáticos , Xilenos/análise , Xilenos/metabolismo , Filogenia , Hidrocarbonetos Aromáticos/metabolismo , Bactérias/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Biodegradação Ambiental
6.
Environ Res ; 216(Pt 2): 114464, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208785

RESUMO

Accidents involving diesel oil spills are prevalent in sea- and coastal regions. Polycyclic aromatic hydrocarbons (PAHs) can be adsorbed in soil and constitute a persistent contaminant due to their poor water solubility and complex breakdown. PAHs pollution is a pervasive environmental concern that poses serious risks to human life and ecosystems. Thus, it is the need of the hour to degrade and decontaminate the toxic pollutant to save the environment. Among all the available techniques, microbial degradation of the PAHs is proving to be greatly beneficial and effective. Bioremediation overcomes the drawbacks of most physicochemical procedures by eliminating numerous organic pollutants at a lower cost in ambient circumstances and has therefore become a prominent remedial option for pollutant removal, including PAHs. In the present study, we have studied the degradation of Low molecular Weight and High Molecular Weight PAH in combination by bacterial strains isolated from a marine environment. Optimum pH, temperature, carbon, and nitrogen sources, NaCl concentrations were found for efficient degradation using the isolated bacterial strains. At 250 mg/L concentration of the PAH mixture an 89.5% degradation was observed. Vibrio algiolytcus strains were found to be potent halotolerant bacteria to degrade complex PAH into less toxic simple molecules. GC-MS and FTIR data were used to probe the pathway of degradation of PAH.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Ecossistema , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias , Hidrocarbonetos Aromáticos/metabolismo , Redes e Vias Metabólicas , Poluentes Ambientais/metabolismo , Poluentes do Solo/metabolismo
7.
Curr Protein Pept Sci ; 24(1): 7-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36366847

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously present in the environment. These compounds have demonstrated both mutagenic and carcinogenic properties. In the past few decades, scientists have constantly been looking for a possible route to their biological degradation. Bacterial ring hydroxylating dioxygenases (RHDs) implicated in the polycyclic aromatic hydrocarbon degradation comprise a large family of enzymes. RHD catalyzes the stereospecific oxidation of PAHs by incorporating molecular oxygen into inert aromatic nuclei. These biocatalysts hold the potential to completely transform and mineralize toxic forms of these compounds into non-toxic forms. RHDsmediated oxygenation produces cis-dihydrodiols, a chiral compound used in pharmaceutical industries. The Molecular investigation of 16S rRNA and key functional genes involved in pollutant degradation have revealed the dominant occurrence of phylum proteobacteria and actinobacteria in hydrocarbonpolluted environments. The present review is aimed at narrating the diversity, distribution, structural and functional characteristics of RHDs. The review further highlights key amino acids participating in RHDs catalysis. It also discusses the robustness of protein engineering methods in improving the structural and functional activity of the ring hydroxylating dioxygenases.


Assuntos
Dioxigenases , Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Dioxigenases/genética , Dioxigenases/metabolismo , RNA Ribossômico 16S/genética , Hidrocarbonetos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias , Biodegradação Ambiental
8.
Sci Total Environ ; 850: 157919, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964739

RESUMO

Biodegradation of aromatic hydrocarbons in anoxic contaminated environments is typically limited by the lack of bioavailable electron acceptors. Microbial electrochemical technologies (METs) are able to provide a virtually inexhaustible electron acceptor in the form of a solid electrode. Recently, we provided first experimental evidence for the syntrophic degradation of toluene in a continuous-flow bioelectrochemical reactor known as the "bioelectric well". Herein, we further analyzed the structure and function of the electroactive toluene-degrading microbiome using a suite of chemical, electrochemical, phylogenetic, proteomic, and functional gene-based analyses. The bioelectric well removed 83 ± 7 % of the toluene from the influent with a coulombic efficiency of 84 %. Cyclic voltammetry allowed to identify the formal potentials of four putative electron transfer sites, which ranged from -0.2 V to +0.1 V vs. SHE, consistent with outer membrane c-type cytochromes and pili of electroactive Geobacter species. The biofilm colonizing the surface of the anode was indeed highly enriched in Geobacter species. On the other hand, the planktonic communities thriving in the bulk of the reactor harbored aromatic hydrocarbons degraders and fermentative propionate-producing microorganisms, as revealed by phylogenetic and proteomic analyses. Most likely, propionate, acetate or other VFAs produced in the bulk liquid from the degradation of toluene were utilized as substrates by the electroactive biofilm. Interestingly, key-functional genes related to the degradation of toluene were found both in the biofilm and in the planktonic communities. Taken as a whole, the herein reported results highlight the importance of applying a comprehensive suite of techniques to unravel the complex cooperative metabolisms occurring in METs.


Assuntos
Geobacter , Hidrocarbonetos Aromáticos , Acetatos/metabolismo , Biofilmes , Citocromos/metabolismo , Eletrodos , Geobacter/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Filogenia , Propionatos/metabolismo , Proteômica , Tolueno/metabolismo
9.
Chemosphere ; 307(Pt 2): 135962, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948106

RESUMO

Accumulating body of evidence indicates that exposure to fine particulate matter (PM2.5) is closely associated with congenital heart disease in the offspring, but the underlying molecular mechanisms remain to be elucidated. We previously reported that extractable organic matter (EOM) from PM2.5 induces reactive oxygen species (ROS) overproduction by activating aromatic hydrocarbon receptor (AHR), leading to heart defects in zebrafish embryos. We hypothesized that endoplasmic reticulum (ER) stress might be elicited by the excessive ROS production and thereby contribute to the cardiac developmental toxicity of PM2.5. In this study, we examined the effects of EOM on endoplasmic reticulum (ER) stress, apoptosis, and Wnt signal pathway in zebrafish embryos, and explored their roles in EOM-induced heart defects. Our results showed that 4-Phenylbutyric acid (4-PBA), a pharmaceutical inhibitor of ER stress, significantly attenuated the EOM-elevated heart malformation rates. Moreover, EOM upregulated the expression levels of ER stress marker genes including CHOP and PDI in the heart of zebrafish embryos, which were counteracted by genetic or pharmaceutical inhibition of AHR activity. The ROS scavenger N-Acetyl-l-cysteine (NAC) also abolished the EOM-induced ER stress. We further demonstrated that both 4-PBA and CHOP genetic knockdown rescued the PM2.5-induced ROS overproduction, apoptosis and suppression of Wnt signaling. In conclusion, our results indicate that PM2.5 induces AHR/ROS-mediated ER stress, which leads to apoptosis and Wnt signaling inhibition, ultimately resulting in heart defects.


Assuntos
Cardiopatias Congênitas , Hidrocarbonetos Aromáticos , Acetilcisteína/farmacologia , Animais , Apoptose , Butilaminas , Cardiotoxicidade , Estresse do Retículo Endoplasmático , Hidrocarbonetos Aromáticos/metabolismo , Material Particulado/farmacologia , Preparações Farmacêuticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
10.
Chemosphere ; 306: 135538, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35792210

RESUMO

Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Aromáticos , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Humanos , Hidrocarbonetos Aromáticos/metabolismo , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/metabolismo
11.
Biotechnol Adv ; 60: 108004, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690272

RESUMO

Lignin represents the most abundant renewable aromatics in nature, which has complicated and heterogeneous structure. The rapid development of biotransformation technology has brought new opportunities to achieve the complete lignin valorization. Especially, Rhodococcus sp. possesses excellent capabilities to metabolize aromatic hydrocarbons degraded from lignin. Furthermore, it can convert these toxic compounds into high value added bioproducts, such as microbial lipids, polyhydroxyalkanoate and carotenoid et al. Accordingly, this review will discuss the potentials of Rhodococcus sp. as a cell factory for lignin biotransformation, including phenol tolerance, lignin depolymerization and lignin-derived aromatic hydrocarbon metabolism. The detailed metabolic mechanism for lignin biotransformation and bioproducts spectrum of Rhodococcus sp. will be comprehensively discussed. The available molecular tools for the conversion of lignin by Rhodococcus sp. will be reviewed, and the possible direction for lignin biotransformation in the future will also be proposed.


Assuntos
Hidrocarbonetos Aromáticos , Poli-Hidroxialcanoatos , Rhodococcus , Carotenoides/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Lignina/química , Fenóis , Poli-Hidroxialcanoatos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
12.
Microbiol Res ; 262: 127087, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717889

RESUMO

The sheer persistence and dissemination of xenobiotic aromatic hydrocarbons contaminants demand sustainable solutions for degradation. Therefore, major pathways of microbial catabolism of aromatic hydrocarbons under aerobic conditions are reviewed and analysed to elicit enhanced biodegradation of aromatic hydrocarbons, via the structure-function relationship of bacterial transcriptional regulators. The initial step of the catabolism occurs via the incorporation of molecular oxygen into the aromatic ring by a multicomponent aromatic ring-hydroxylating-dioxygenase (RHD) enzyme system or monooxygenase system forming different central intermediates such as catechols, protocatechuates, gentisates, and (hydroxy)benzoquinols. The central or lower pathways involve the ring cleavage of central intermediates to tricarboxylic acids. These metabolic pathways are tightly regulated, where the inducer or substrate-specific transcriptional regulation of aromatic catabolic pathways depend on the specific regulatory proteins that acts on a specific promoter in response to a respective inducer signal. These regulatory systems have been grouped according to the regulatory proteins and their families, and identified based on their conserved motifs and their modes of DNA binding. Different regulators from protein families like AraC/XylS, LysR, XylR/NtrC, IclR, etc. have been identified, that are involved in aromatic hydrocarbon regulation. These regulatory proteins have different structures and have different mechanisms of regulation. The proteins of the XylS/AraC family have two domains structure: a highly conserved C-terminus that contains two HTH motifs and the N-terminus end containing the regulatory domain. The LysR type regulatory proteins (LTTRs) act as tetramers that have a helix-turn-helix (HTH) domain at the N terminus and a regulatory binding domain at the C terminus. The IclR regulatory proteins also have a helix-turn-helix DNA binding motif in the N-terminus domain-like LTTRs but include an effector binding motif in the C-terminus domain that is also involved in subunit multimerization. In contrast, the XylR-like regulatory proteins have three domain structures; one for effector sensing, another for ATP binding and hydrolysis, and a domain for DNA binding which contains an HTH motif. This review describes in depth and critical assessment of the aerobic bacterial degradation pathways of aromatic hydrocarbon pollutants with state of art information, underscores areas that are viable and others that require further development, with particular reference to metabolic engineering and synthetic biology applications.


Assuntos
Hidrocarbonetos Aromáticos , Fatores de Transcrição , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA , Hidrocarbonetos Aromáticos/metabolismo , Regiões Promotoras Genéticas , Relação Estrutura-Atividade , Fatores de Transcrição/genética
13.
Folia Microbiol (Praha) ; 67(4): 591-604, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35318574

RESUMO

One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Bactérias , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Proteômica , Pseudomonas/genética , Pseudomonas/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35138241

RESUMO

Two Gram-reaction-negative strains, designated as B13T and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to Pinisolibacter ravus E9T (97.36 %) and Siculibacillus lacustris SA-279T (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13T had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13T and MA2-2 were C18 : 1 ω7c/C18 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The major ubiquinone of strain B13T was Q10, while the major polar lipids were phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13T and MA2-2 are members of the genus Pinisolibacter and represent a novel species for which the name Pinisolibacter aquiterrae sp. nov. is proposed. The type strain of the species is strain B13T (=LMG 32346T=NCAIM B.02665T).


Assuntos
Alphaproteobacteria/classificação , Benzeno , Filogenia , Xilenos , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Benzeno/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/química , Hidrocarbonetos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xilenos/metabolismo
15.
Sci Rep ; 11(1): 22444, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789769

RESUMO

TonB-dependent transporters (TBDTs) mediate outer membrane transport of nutrients using the energy derived from proton motive force transmitted from the TonB-ExbB-ExbD complex localized in the inner membrane. Recently, we discovered ddvT encoding a TBDT responsible for the uptake of a 5,5-type lignin-derived dimer in Sphingobium sp. strain SYK-6. Furthermore, overexpression of ddvT in an SYK-6-derivative strain enhanced its uptake capacity, improving the rate of platform chemical production. Thus, understanding the uptake system of lignin-derived aromatics is fundamental for microbial conversion-based lignin valorization. Here we examined whether multiple tonB-, exbB-, and exbD-like genes in SYK-6 contribute to the outer membrane transport of lignin-derived aromatics. The disruption of tonB2-6 and exbB3 did not reduce the capacity of SYK-6 to convert or grow on lignin-derived aromatics. In contrast, the introduction of the tonB1-exbB1-exbD1-exbD2 operon genes into SYK-6, which could not be disrupted, promoted the conversion of ß-O-4-, ß-5-, ß-1-, ß-ß-, and 5,5-type dimers and monomers, such as ferulate, vanillate, syringate, and protocatechuate. These results suggest that TonB-dependent uptake involving the tonB1 operon genes is responsible for the outer membrane transport of the above aromatics. Additionally, exbB2/tolQ and exbD3/tolR were suggested to constitute the Tol-Pal system that maintains the outer membrane integrity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lignina/metabolismo , Proteínas de Membrana/metabolismo , Sphingomonadaceae/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hidrocarbonetos Aromáticos/metabolismo , Proteínas de Membrana/genética , Força Próton-Motriz , Sphingomonadaceae/genética
16.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209778

RESUMO

We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA-DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/genética , Hidrocarbonetos Aromáticos/metabolismo , Técnicas de Tipagem Bacteriana , Burkholderiaceae/isolamento & purificação , Burkholderiaceae/metabolismo , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacocinética , DNA Bacteriano/análise , DNA Bacteriano/genética , Recuperação e Remediação Ambiental/métodos , Florestas , Genoma Bacteriano , Hidrocarbonetos Aromáticos/farmacocinética , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/análise , Recombinases Rec A/genética , Análise de Sequência de DNA , Microbiologia do Solo
17.
J Med Chem ; 64(12): 8545-8563, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34110134

RESUMO

Aromatic and heteroaromatic amines (ArNH2) are activated by cytochrome P450 monooxygenases, primarily CYP1A2, into reactive N-arylhydroxylamines that can lead to covalent adducts with DNA nucleobases. Hereby, we give hands-on mechanism-based guidelines to design mutagenicity-free ArNH2. The mechanism of N-hydroxylation of ArNH2 by CYP1A2 is investigated by density functional theory (DFT) calculations. Two putative pathways are considered, the radicaloid route that goes via the classical ferryl-oxo oxidant and an alternative anionic pathway through Fenton-like oxidation by ferriheme-bound H2O2. Results suggest that bioactivation of ArNH2 follows the anionic pathway. We demonstrate that H-bonding and/or geometric fit of ArNH2 to CYP1A2 as well as feasibility of both proton abstraction by the ferriheme-peroxo base and heterolytic cleavage of arylhydroxylamines render molecules mutagenic. Mutagenicity of ArNH2 can be removed by structural alterations that disrupt geometric and/or electrostatic fit to CYP1A2, decrease the acidity of the NH2 group, destabilize arylnitrenium ions, or disrupt their pre-covalent transition states with guanine.


Assuntos
Aminas/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Compostos Heterocíclicos/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Mutagênicos/metabolismo , Aminas/química , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP1A2/química , Teoria da Densidade Funcional , Análise Discriminante , Compostos Heterocíclicos/química , Humanos , Hidrocarbonetos Aromáticos/química , Hidroxilação , Análise dos Mínimos Quadrados , Modelos Químicos , Estrutura Molecular , Mutagênicos/química , Ligação Proteica
18.
World J Microbiol Biotechnol ; 37(7): 122, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151386

RESUMO

The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.


Assuntos
Burkholderia/metabolismo , Cupriavidus/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Octanos/metabolismo , Pseudomonas/metabolismo , Técnicas de Tipagem Bacteriana , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Burkholderia/classificação , Burkholderia/genética , Catecol 2,3-Dioxigenase/genética , Cupriavidus/classificação , Cupriavidus/genética , Citocromo P-450 CYP4A/genética , DNA Bacteriano , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S , Tolueno/metabolismo , Xilenos/metabolismo
19.
World J Microbiol Biotechnol ; 37(5): 84, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33855641

RESUMO

L-phenylalanine is an important amino acid that is widely used in the fields of food flavors and pharmaceuticals. Apart from L-phenylalanine itself, various commercially valuable chemical compounds can also be generated via the L-phenylalanine biosynthesis pathway. Compared with direct extraction from plants or synthesis by chemical reaction, microbial production of L-phenylalanine -derived compounds can overcome the drawbacks of environmental pollution, low yield, and mixtures of stereoisomeric products. Accordingly, increasing intracellular levels of precursors, deregulating feedback inhibition and transcription repression, engineering global regulators and other effective strategies have been implemented to produce different L-phenylalanine -derived compounds in the excellent chassis host Escherichia coli. Finally, this review highlights principal strategies for improving the production of L-phenylalanine and/or its derivatives in E. coli, and discusses the future outlook for further enhancing the titer and yields of these compounds.


Assuntos
Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrocarbonetos Aromáticos/metabolismo , Microbiologia Industrial , Engenharia Metabólica
20.
Plant Physiol ; 186(2): 891-909, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33723573

RESUMO

Benzenoids (C6-C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6-C3). The biosynthesis of C6-C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6-C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal ß-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


Assuntos
Derivados de Benzeno/metabolismo , Besouros/fisiologia , Hidrocarbonetos Aromáticos/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Acil Coenzima A/metabolismo , Animais , Derivados de Benzeno/química , Cinamatos/metabolismo , Herbivoria , Hidrocarbonetos Aromáticos/química , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Oxirredução , Peroxissomos/metabolismo , Proteínas de Plantas/genética , Populus/química , Populus/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...